A computational algorithm for special nth-order pentadiagonal Toeplitz determinants

نویسندگان

  • Emrah Kilic
  • Moawwad E. A. El-Mikkawy
چکیده

In this short note, we present a fast and reliable algorithm for evaluating special nth-order pentadiagonal Toeplitz determinants in linear time. The algorithm is suited for implementation using Computer Algebra Systems (CAS) such as MACSYMA and MAPLE. Two illustrative examples are given. 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast and reliable algorithm for evaluating nth order pentadiagonal determinants

In the current article we present a fast and reliable algorithm for evaluating nth order pentadiagonal determinants in linear time. It is a natural generalization of the DETGTRI algorithm [M. El-Mikkawy, A fast algorithm for evaluating nth order tri-diagonal determinants, J. Comput. Appl. Math. 166 (2004) 581–584]. The algorithm is suited for implementation using computer algebra systems (CAS) ...

متن کامل

A New Algorithm for Computing the Determinant and the Inverse of a Pentadiagonal Toeplitz Matrix

An effective numerical algorithm for computing the determinant of a pentadiagonal Toeplitz matrix has been proposed by Xiao-Guang Lv and others [1]. The complexity of the algorithm is (9n + 3). In this paper, a new algorithm with the cost of (4n + 6) is presented to compute the determinant of a pentadiagonal Toeplitz matrix. The inverse of a pentadiagonal Toeplitz matrix is also considered.

متن کامل

On the Inverse Problem of Constructing Symmetric Pentadiagonal Toeplitz Matrices from Three Largest Eigenvalues

The inverse problem of constructing a symmetric Toeplitz matrix with prescribed eigenvalues has been a challenge both theoretically and computationally in the literature. It is now known in theory that symmetric Toeplitz matrices can have arbitrary real spectra. This paper addresses a similar problem — Can the three largest eigenvalues of symmetric pentadiagonal Toeplitz matrices be arbitrary? ...

متن کامل

The Extended Fisher-hartwig Conjecture for Symbols with Multiple Jump Discontinuities

The asymptotic expansions of Toeplitz determinants of certain symbols with multiple jump discontinuities are shown to satisfy a revised version of the conjecture of Fisher and Hartwig. The Toeplitz matrix T n [φ] is said to be generated by the function φ if T n [φ] = (φ i−j), i, j = 0,. .. , n − 1. where φ n = 1 2π 2π 0 φ(θ)e −inθ dθ is the nth Fourier coefficient of φ. Define the determinant T...

متن کامل

Two algorithms for solving general backward pentadiagonal linear systems

Abstract In this paper we present an efficient computational and symbolic algorithms for solving a backward pentadiagonal linear systems. The implementation of the algorithms using Computer Algebra Systems (CAS) such as MAPLE, MACSYMA, MATHEMATICA, and MATLAB are straightforward. An examples are given in order to illustrate the algorithms. The symbolic algorithm is competitive the other methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 199  شماره 

صفحات  -

تاریخ انتشار 2008